The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

In Problems 1-7, verify the inequalities.

08_exp-log_functions-13.gif

08_exp-log_functions-14.gif

08_exp-log_functions-15.gif

08_exp-log_functions-16.gif

08_exp-log_functions-17.gif

08_exp-log_functions-18.gif

08_exp-log_functions-19.gif

In Problems 8-23 evaluate the limit.

08_exp-log_functions-20.gif

08_exp-log_functions-21.gif

08_exp-log_functions-22.gif

08_exp-log_functions-23.gif

08_exp-log_functions-24.gif

08_exp-log_functions-25.gif

08_exp-log_functions-26.gif

08_exp-log_functions-27.gif

08_exp-log_functions-28.gif

08_exp-log_functions-29.gif

08_exp-log_functions-30.gif

08_exp-log_functions-31.gif

08_exp-log_functions-32.gif

08_exp-log_functions-33.gif

08_exp-log_functions-34.gif

08_exp-log_functions-35.gif

24            Prove that the function y = xx, x ≥ 1, is increasing.

25            Prove that if a > 0 and limx→c f(x) = L, then limx→c af(x) = aL.

26            Prove that for each real number r, the function y = xr, x > 0, is continuous.


Last Update: 2006-11-25