The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Example 2

Sketch the curve xy - 4 = 0.

Step 1

Apply the Discriminant Test to find the type of curve.

B2 - 4AC = 12 - 4 · 0 · 0 = 1.

The discriminant is positive, so the curve is a hyperbola.

Step 2

Find an angle α with

05_limits_g_approx-377.gif

Step 3

Change coordinate axes using the rotation equations.

05_limits_g_approx-378.gif

Substituting, we get

05_limits_g_approx-380.gif

As a check, the discriminant is still 02 - 4 · (½) · ( - ½) = 1.

Step 4

Draw the X and Y axes as dotted lines and sketch the curve.

The new axes are found by rotating the old axes by α = 45°. The curve is shown in Figure 5.7.5.

05_limits_g_approx-381.gif

Figure 5.7.5: Example 2: xy - 4 = 0


Last Update: 2006-11-15