The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

Compute the standard parts of the following.

01_real_and_hyperreal_numbers-186.gif

01_real_and_hyperreal_numbers-187.gif

01_real_and_hyperreal_numbers-188.gif

01_real_and_hyperreal_numbers-189.gif

01_real_and_hyperreal_numbers-190.gif

01_real_and_hyperreal_numbers-191.gif

01_real_and_hyperreal_numbers-192.gif

01_real_and_hyperreal_numbers-193.gif

01_real_and_hyperreal_numbers-194.gif

01_real_and_hyperreal_numbers-195.gif

01_real_and_hyperreal_numbers-196.gif

01_real_and_hyperreal_numbers-197.gif

01_real_and_hyperreal_numbers-198.gif

01_real_and_hyperreal_numbers-199.gif

01_real_and_hyperreal_numbers-200.gif

01_real_and_hyperreal_numbers-201.gif

01_real_and_hyperreal_numbers-202.gif

01_real_and_hyperreal_numbers-203.gif

01_real_and_hyperreal_numbers-204.gif

01_real_and_hyperreal_numbers-205.gif

01_real_and_hyperreal_numbers-206.gif

 

01_real_and_hyperreal_numbers-207.gif

01_real_and_hyperreal_numbers-208.gif

01_real_and_hyperreal_numbers-209.gif

01_real_and_hyperreal_numbers-210.gif

01_real_and_hyperreal_numbers-211.gif

01_real_and_hyperreal_numbers-212.gif

01_real_and_hyperreal_numbers-213.gif

01_real_and_hyperreal_numbers-214.gif

01_real_and_hyperreal_numbers-215.gif

01_real_and_hyperreal_numbers-216.gif

01_real_and_hyperreal_numbers-217.gif

01_real_and_hyperreal_numbers-218.gif

01_real_and_hyperreal_numbers-219.gif

In the following problems let a, b, a1, b, be hyperreal numbers with a ≈ a1, b ≈ b1.

35            Show that a + b « a1 + b1.

Hint: Put a1 = a + ε, b1 = b + δ, and compute the difference (a1 + b1) - (a + b).

36            Show that if a, b are finite, then ab ≈ a1 b1.

37            Show that if a = δ = H, a1 = b1 = H + 1/H, then ab 01_real_and_hyperreal_numbers-166.gif a1 b1.(H positive infinite).


Last Update: 2006-11-25