You are working with the text-only light edition of "H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. ISBN 3-540-14743-8". Click here for further information. |
Table of Contents Multivariate Data Modeling Classification and Discrimination Cluster Analysis Agglomerative Clustering | |
See also: cluster analysis, minimal spanning tree |
dqi' = s dpi + t dqi + u dpq + v |dpi-dqp|
with
s,t,u, and v being the system parameters,
dpi, dqi, dpq the distances between the clusters (or objects), and
dqi' being the new distance between the new cluster q and all other objects i. dqi' replaces dqi during the merging process.
Listed below are the parameters of the most commonly used clustering
techniques.
type of clustering | s | t | u | v | comment |
single linkage | 0.5 | 0.5 | 0 | -0.5 | contracting |
complete linkage | 0.5 | 0.5 | 0 | 0.5 | dilating |
average linkage | 0.5 | 0.5 | 0 | 0 | compromise |
median | 0.5 | 0.5 | -0.25 | 0 | not monotonous |
centroid | np/n | nq/n | -npnq/n2 | 0 | not monotonous |
Ward | (np+ni)/(n-ni) | (nq+ni)/(n-ni) | -ni/(n-ni) | 0 | "best" approach |
flexible strategy | a | a | 1-2a | 0 | parameter a determines behavior |
n ... number of objects
np ... number of objects in cluster p nq ... number of objects in cluster q ni ... number of objects in cluster i |
Last Update: 2006-Jän-17