Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information....

Rules of Randomness

The continental U.S. got its first taste of volcanism in recent memory with the eruption of Mount St. Helens in 1980.

Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the things which compose it...nothing would be uncertain, and the future as the past would be laid out before its eyes. (Pierre Simon de Laplace, 1776)

The Quantum Mechanics is very imposing. But an inner voice tells me that it is still not the final truth. The theory yields much, but it hardly brings us nearer to the secret of the Old One. In any case, I am convinced that He does not play dice. (Albert Einstein)

However radical Newton's clockwork universe seemed to his contemporaries, by the early twentieth century it had become a sort of smugly accepted dogma. Luckily for us, this deterministic picture of the universe breaks down at the atomic level. The clearest demonstration that the laws of physics contain elements of randomness is in the behavior of radioactive atoms. Pick two identical atoms of a radioactive isotope, say the naturally occurring uranium 238, and watch them carefully. They will decay at different times, even though there was no difference in their initial behavior.

We would be in big trouble if these atoms' behavior was as predictable as expected in the Newtonian world-view, because radioactivity is an important source of heat for our planet. In reality, each atom chooses a random moment at which to release its energy, resulting in a nice steady heating effect. The earth would be a much colder planet if only sunlight heated it and not radioactivity. Probably there would be no volcanoes, and the oceans would never have been liquid. The deep-sea geothermal vents in which life first evolved would never have existed. But there would be an even worse consequence if radioactivity was deterministic: after a few billion years of peace, all the uranium 238 atoms in our planet would presumably pick the same moment to decay. The huge amount of stored nuclear energy, instead of being spread out over eons, would all be released at one instant, blowing our whole planet to Kingdom Come.1

The new version of physics, incorporating certain kinds of randomness, is called quantum physics (for reasons that will become clear later). It represented such a dramatic break with the previous, deterministic tradition that everything that came before is considered "classical," even the theory of relativity. The remainder of this book is a basic introduction to quantum physics.

1This is under the assumption that all the radioactive heating comes from uranium atoms, and that all the atoms were created at the same time. In reality, both uranium and thorium atoms contribute, and they may not have all been created at the same time. We have only a general idea of the processes that created these heavy elements in the gas cloud from which our solar system condensed. Some portion of them may have come from nuclear reactions in supernova explosions in that particular nebula, but some may have come from previous supernova explosions throughout our galaxy, or from exotic events like collisions of white dwarf stars.

Discussion Questions

A I said "Pick two identical atoms of a radioactive isotope." Are two atoms really identical? If their electrons are orbiting the nucleus, can we distinguish each atom by the particular arrangement of its electrons at some instant in time?




Last Update: 2009-06-21