Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information.... |
Home Conservation Laws Work: The Transfer of Mechanical Energy The concept of work | |||
Search the VIAS Library | Index | |||
The concept of workThe mass contained in a closed system is a conserved quantity, but if the system is not closed, we also have ways of measuring the amount of mass that goes in or out. The water company does this with a meter that records your water use. Likewise, we often have a system that is not closed, and would like to know how much energy comes in or out. Energy, however, is not a physical substance like water, so energy transfer cannot be measured with the same kind of meter. How can we tell, for instance, how much useful energy a tractor can put out on one tank of gas? The law of conservation of energy guarantees that all the chemical energy in the gasoline will reappear in some form, but not necessarily in a form that is useful for doing farm work. Tractors, like cars, are extremely inefficient, and typically 90% of the energy they consume is converted directly into heat, which is carried away by the exhaust and the air flowing over the radiator. We wish to distinguish the energy that comes out directly as heat from the energy that serves to accelerate a trailer or to plow a field, so we define a technical meaning of the ordinary word work to express the distinction:
definition of workWork is the amount of energy transferred into or out of a system, not counting energy transferred by heat conduction.
The conduction of heat is to be distinguished from heating by friction. When a hot potato heats up your hands by conduction, the energy transfer occurs without any force, but when friction heats your car's brake shoes, there is a force involved. The transfer of energy with and without a force are measured by completely different methods, so we wish to include heat transfer by frictional heating under the definition of work, but not heat transfer by conduction. The definition of work could thus be restated as the amount of energy transferred by forces.
|
|||
Home Conservation Laws Work: The Transfer of Mechanical Energy The concept of work |