General Chemistry is a free introductory textbook on chemistry. See the editorial for more information....

Dynamic Equilibrium

Author: John Hutchinson

There are several questions raised by our observations of phase equilibrium and vapor pressure. The first we will consider is why the pressure of a vapor in equilibrium with its liquid does not depend on the volume of the container into which the liquid evaporates, or on the amount of liquid in the container, or on the amount of vapor in the container. Why do we get the same pressure for the same temperature, regardless of other conditions? To address this question, we need to understand the coexistence of vapor and liquid in equilibrium. How is this equilibrium achieved?

To approach these questions, let us look again at the situation in figure 4. We begin with a container with a fixed volume containing some liquid, and equilibrium is achieved at the vapor pressure of the liquid at the fixed temperature given. When we adjust the volume to a larger fixed volume, the pressure adjusts to equilibrium at exactly the same vapor pressure.

Clearly, there are more molecules in the vapor after the volume is increased and equilibrium is reestablished, because the vapor exerts the same pressure in a larger container at the same temperature. Also clearly, more liquid must have evaporated to achieve this equilibrium. A very interesting question to pose here is how the liquid responded to the increase in volume, which presumably only affected the space in which the gas molecules move. How did the liquid "know" to evaporate when the volume was increased? The molecules in the liquid could not detect the increase in volume for the gas, and thus could not possibly be responding to that increase.

The only reasonable conclusion is that the molecules in the liquid were always evaporating, even before the volume of the container was increased. There must be a constant movement of molecules from the liquid phase into the gas phase. Since the pressure of the gas above the liquid remains constant when the volume is constant, then there must be a constant number of molecules in the gas. If evaporation is constantly occurring, then condensation must also be occurring constantly, and molecules in the gas must constantly be entering the liquid phase. Since the pressure remains constant in a fixed volume, then the number of molecules entering the gas from the liquid must be exactly offset by the number of molecules entering the liquid from the gas.

At equilibrium, therefore, the pressure and temperature inside the container are unchanging, but there is constant movement of molecules between the phases. This is called dynamic equilibrium. The situation is "equilibrium" in that the observable properties of the liquid and gas in the container are not changing, but the situation is "dynamic" in that there is constant movement of molecules between phases. The dynamic processes that take place offset each other exactly, so that the properties of the liquid and gas do not change.

What happens when we increase the volume of the container to a larger fixed volume? We know that the pressure equilibrates at the same vapor pressure, and that therefore there are more molecules in the vapor phase. How did they get there? It must be the case that when the volume is increased, evaporation initially occurs more rapidly than condensation until equilibrium is achieved. The rate of evaporation must be determined by the number of molecules in the liquid which have sufficient kinetic energy to escape the intermolecular forces in the liquid, and according to the kinetic molecular theory, this number depends only on the temperature, not on the volume. However, the rate of condensation must depend on the frequency of molecules striking the surface of the liquid. According to the Kinetic Molecular Theory, this frequency must decrease when the volume is increased, because the density of molecules in the gas decreases. Therefore, the rate of condensation becomes smaller than the rate of evaporation when the volume is increased, and therefore there is a net flow of molecules from liquid to gas. This continues until the density of molecules in the gas is restored to its original value, at which point the rate of evaporation is matched by the rate of condensation. At this point, this pressure stops increasing and is the same as it was before the volume was increased.




Last Update: 2011-02-16