VIAS Encyclopedia provides a collection of tables and definitions commonly needed in science and engineering. |
Home Chemistry Chemical Elements A - C Aluminum | |||||||||||||||
See also: Periodic Table of the Elements | |||||||||||||||
Aluminum
History(L. alumen: alum) The ancient Greeks and Romans used alum as an astringent and as a mordant in dyeing. In 1761 de Morveau proposed the name alumine for the base in alum, and Lavoisier, in 1787, thought this to be the oxide of a still undiscovered metal. Wohler is generally credited with having isolated the metal in 1827, although an impure form was prepared by Oersted two years earlier. In 1807, Davy proposed the name aluminum for the metal, undiscovered at that time, and later agreed to change it to aluminum. Shortly thereafter, the name aluminum was adopted to conform with the "ium" ending of most elements, and this spelling is now in use elsewhere in the world. Aluminium was also the accepted spelling in the U.S. until 1925, at which time the American Chemical Society officially decided to use the name aluminum thereafter in their publications. SourcesThe method of obtaining aluminum metal by the electrolysis of alumina dissolved in cryolite was discovered in 1886 by Hall in the U.S. and at about the same time by Heroult in France. Cryolite, a natural ore found in Greenland, is no longer widely used in commercial production, but has been replaced by an artificial mixture of sodium, aluminum, and calcium fluorides. Aluminum can now be produced from clay, but the process is not economically feasible at present. Aluminum is the most abundant metal to be found in the earth's crust (8.1%), but is never found free in nature. In addition to the minerals mentioned above, it is also found in granite and in many other common minerals. PropertiesPure aluminum, a silvery-white metal, possesses many desirable characteristics. It is light, it is nonmagnetic and nonsparking, stands second among metals in the scale of malleability, and sixth in ductility. UsesIt is extensively used for kitchen utensils, outside building decoration, and in thousands of industrial applications where a strong, light, easily constructed material is needed. Although its electrical conductivity is only about 60% that of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements impart a variety of useful properties. These alloys are of vital importance in the construction of modern aircraft and rockets. Aluminum, evaporated in a vacuum, forms a highly reflective coating for both visible light and radiant heat. These coatings soon form a thin layer of the protective oxide and do not deteriorate as do silver coatings. They are used to coat telescope mirrors and to make decorative paper, packages, and toys. CompoundsThe compounds of greatest importance are aluminum oxide, the sulfate, and the soluble sulfate with potassium (alum). The oxide, alumina, occurs naturally as ruby (Al2O3), sapphire, corundum, and emery, and is used in glassmaking and refractories. Synthetic ruby and sapphire are used in lasers for producing coherent light. This text is partially based on public educational material provided by Los Alamos National Laboratory.
|
|||||||||||||||
Home Chemistry Chemical Elements A - C Aluminum |