The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

In Problems 1-8, evaluate the iterated integral.

12_multiple_integrals-364.gif

12_multiple_integrals-365.gif

12_multiple_integrals-366.gif

12_multiple_integrals-367.gif

12_multiple_integrals-368.gif

12_multiple_integrals-369.gif

12_multiple_integrals-370.gif

12_multiple_integrals-371.gif

In Problems 9-16, evaluate the triple integral.

12_multiple_integrals-372.gif

12_multiple_integrals-373.gif

12_multiple_integrals-374.gif

12_multiple_integrals-375.gif

12_multiple_integrals-376.gif

12_multiple_integrals-377.gif

12_multiple_integrals-378.gif

12_multiple_integrals-379.gif

In Problems 17-26, find (a) the mass, (b) the center of mass, (c) the moments of inertia about the three coordinate axes, of an object with density ρ(x, y, z) filling the region E.

12_multiple_integrals-380.gif

12_multiple_integrals-381.gif

12_multiple_integrals-382.gif

12_multiple_integrals-383.gif

12_multiple_integrals-384.gif

12_multiple_integrals-385.gif

23            E is the tetrahedron with vertices at (0,0,0), (a, 0,0), (0, b, 0), (0,0, c), ρ(x, y, z) = k.

24            £ is the tetrahedron with vertices (0,0,0), (1,0,0), (1,1,0), (1,0,1), ρ(x, y, z) = x + y + z.

25            E is the rectangular box 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, ρ(x, y, z) = k.

26                   E is the rectangular box - a ≤ x ≤ a, -b ≤ y ≤ b, -c ≤ z ≤ c, ρ(x, y, z) = k.


Last Update: 2006-11-25