The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems;

In Problems 1-8, find MacLaurin's Formula for f(x), and use it to approximate f(½) within 0.01. (If a hand calculator is available, the approximations should be found within 0.0001.)

09_infinite_series-714.gif

09_infinite_series-715.gif

09_infinite_series-716.gif

09_infinite_series-717.gif

09_infinite_series-718.gif

09_infinite_series-719.gif

09_infinite_series-720.gif

09_infinite_series-721.gif

In Problems 9-18 find the first two nonzero terms in MacLaurin's Formula and use it to approximate f(⅓).

09_infinite_series-722.gif

09_infinite_series-723.gif

09_infinite_series-724.gif

09_infinite_series-725.gif

09_infinite_series-726.gif

09_infinite_series-727.gif

09_infinite_series-728.gif

09_infinite_series-729.gif

09_infinite_series-730.gif

09_infinite_series-731.gif

19            Find Taylor's Formula for f(x) = ex in powers of x - 2.

20            Find Taylor's Formula for f(x) = ln x in powers of x - 10.

21            Find Taylor's Formula for f(x) = xp in powers of x - 1, where p is a constant real number.

22            Find Taylor's Formula for f(x) = sin x in powers of x - π.


Last Update: 2006-11-25