The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

1           Plot the following points in polar coordinates:

(a) (2, π/3) (b) (-3, π/2) (c) (1, 4π/3)
(d) (-2, -π/4) (e) (½, π) (f) (0,3π /2)

In Problems 2-12, find an equation in polar coordinates which has the same graph as the given equation in rectangular coordinates.

07_trigonometric_functions-430.gif

07_trigonometric_functions-431.gif

07_trigonometric_functions-432.gif

07_trigonometric_functions-433.gif

07_trigonometric_functions-434.gif

07_trigonometric_functions-435.gif

07_trigonometric_functions-436.gif

07_trigonometric_functions-437.gif

07_trigonometric_functions-438.gif

07_trigonometric_functions-439.gif

07_trigonometric_functions-440.gif

In Problems 13-20, sketch the given curve in polar coordinates.

07_trigonometric_functions-441.gif

07_trigonometric_functions-442.gif

07_trigonometric_functions-443.gif

07_trigonometric_functions-444.gif

07_trigonometric_functions-445.gif

07_trigonometric_functions-446.gif

07_trigonometric_functions-447.gif

07_trigonometric_functions-448.gif

In Problems 21-24, find rectangular parametric equations for the given curves.

07_trigonometric_functions-449.gif

07_trigonometric_functions-450.gif

07_trigonometric_functions-451.gif

07_trigonometric_functions-452.gif

25            Prove that if f(θ) = f(-θ) then the curve r = f(θ) is symmetric about the x-axis. That is, if (x, y) is on the curve then so is (x, -y).

26             Prove that if f(θ) = f(π + θ) then the curve r = f(θ) is symmetric about the origin. That is, if (x, y) is on the curve so is (-x, -r).

27             Prove that if f(θ) = f(π - θ) then the curve r = f(θ) is symmetric about the y-axis.


Last Update: 2006-11-25