The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Extra Problems

1            Evaluate 04_integration-497.gif

2            Evaluate 04_integration-498.gif

3            Evaluate 04_integration-499.gif

4            Evaluate 04_integration-500.gif

5            If F'(x) = l/(2x - 1)2 for all x 1/2, find F(2) - F(l).

6             If G'(t) =04_integration-501.giffor all t > - 1/4, find G(2) - G(0).

7            A particle moves with velocity 04_integration-502.gif. How far does it move from times t0 = 1 to t1 = 5?

8            A particle moves with velocity 04_integration-503.gif. How far does it move from times t0 = 1 to t1 = 4?

9            A particle moves with velocity v = (t + l)(2t + 3). If it has position y0 = 0 at time t = 0, find its position at time t = 10.

10            A particle moves with acceleration a = 1/t4. If it has velocity v0 = 4 and position y0 = 2 at time t = 1, find its position at time t = 3.

11             Find the area of the region under the curve y = 1/√x, 1 ≤ x ≤ 4.

12            Find the area of the region under the curve y = √x - x√x, 0 ≤ x ≤ 1. In Problems 13-30, evaluate the integral.

13           04_integration-504.gif 1404_integration-505.gif

15           04_integration-506.gif 1604_integration-507.gif

17           04_integration-508.gif 1804_integration-509.gif

19           04_integration-510.gif 2004_integration-511.gif

21           04_integration-512.gif 2204_integration-513.gif

23           04_integration-514.gif 2404_integration-515.gif

25           04_integration-516.gif 2604_integration-517.gif

27           04_integration-518.gif 2804_integration-519.gif

29           04_integration-520.gif 3004_integration-521.gif

31           Differentiate 04_integration-522.gif

32           Differentiate 04_integration-523.gif

33           Differentiate 04_integration-524.gif

34           Differentiate 04_integration-525.gif

35            Find the function F such that F'(x) = x - 1 for all x, and the minimum value of F(x) is b..

36            Find the function F such that F"(x) = x for all x, F(0) = 1, and F(l) = 1.

37            Find the function F such that F"(x) = 6 for all x, F(x) has a minimum at x = 1, and the minimum value is 2.

38            Find all functions F such that F"(x) = 1 + x-3 for all positive x.

39            Find the function F such that 04_integration-526.gif and F(0) = 1.

40            Find the value of b such that the area of the region under the curve y = x{b - x), 0 ≤ x ≤ b, is 1.

41            Suppose f is increasing for a ≤ x ≤ b, and Δx = (b - a)/n where n is a positive integer. Show that 04_integration-527.gif

42            Suppose f is continuous for a ≤ x ≤ b. Show that 04_integration-528.gif

43             04_integration-529.gifFind the area of the top half of the ellipse x2/a2 + y2/b2 = 1 using the formula

44            Evaluate04_integration-530.gif using the formula 04_integration-531.gif

45            Find 04_integration-532.gif

46            Suppose f(t) is continuous for all t and let 04_integration-533.gif Prove that G"(x) = f(x).

47            Prove that for any continuous functions f and g,

48            Prove Schwartz' Inequality,04_integration-534.gif Hint: Use the preceding problem.

49            Suppose f is continuous and dx is positive infinitesimal. Show that 04_integration-535.gif Hint: For each positive real c, 04_integration-536.gif Use this to show that 04_integration-537.gif

50            Suppose f is continuous, n is an integer, and dx is positive infinitesimal. Prove that
04_integration-538.gif
04_integration-539.gif


Last Update: 2010-11-26