The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

In Problems 1-90, evaluate the integral.

04_integration-281.gif

04_integration-282.gif

04_integration-283.gif

04_integration-284.gif

04_integration-285.gif

04_integration-286.gif

04_integration-287.gif

04_integration-288.gif

04_integration-289.gif

04_integration-290.gif

04_integration-291.gif

04_integration-292.gif

04_integration-293.gif

04_integration-294.gif

04_integration-295.gif

04_integration-296.gif

04_integration-297.gif

04_integration-298.gif

04_integration-299.gif

04_integration-300.gif

04_integration-301.gif

04_integration-302.gif

04_integration-303.gif

04_integration-304.gif

04_integration-305.gif

04_integration-306.gif

04_integration-307.gif

04_integration-308.gif

04_integration-309.gif

04_integration-310.gif

04_integration-311.gif

04_integration-312.gif

04_integration-313.gif

04_integration-314.gif

04_integration-315.gif

04_integration-316.gif

04_integration-317.gif

04_integration-318.gif

04_integration-319.gif

04_integration-320.gif

04_integration-321.gif

04_integration-322.gif

04_integration-323.gif

04_integration-324.gif

04_integration-325.gif

04_integration-326.gif

04_integration-327.gif

04_integration-328.gif

04_integration-329.gif

04_integration-330.gif

04_integration-331.gif

04_integration-332.gif

04_integration-333.gif

04_integration-334.gif

In Problems 91-108, evaluate the definite integral.

04_integration-335.gif

04_integration-336.gif

04_integration-337.gif

04_integration-338.gif

04_integration-339.gif

04_integration-340.gif

04_integration-341.gif

04_integration-342.gif

04_integration-343.gif

04_integration-344.gif

04_integration-345.gif

04_integration-346.gif

04_integration-347.gif

04_integration-348.gif

04_integration-349.gif

04_integration-350.gif

04_integration-351.gif

04_integration-352.gif

04_integration-353.gif

04_integration-354.gif

04_integration-355.gif

04_integration-356.gif

04_integration-357.gif

04_integration-358.gif

04_integration-359.gif

04_integration-360.gif

04_integration-361.gif

04_integration-362.gif

04_integration-363.gif

04_integration-364.gif

04_integration-365.gif

04_integration-366.gif

04_integration-367.gif

04_integration-368.gif

04_integration-369.gif

04_integration-370.gif

04_integration-371.gif

04_integration-372.gif

04_integration-373.gif

04_integration-374.gif

04_integration-375.gif

04_integration-376.gif

04_integration-377.gif

04_integration-378.gif

04_integration-381.gif

04_integration-382.gif

04_integration-383.gif

04_integration-384.gif

04_integration-385.gif

04_integration-386.gif

04_integration-387.gif

04_integration-388.gif

04_integration-389.gif

04_integration-390.gif

109          Find the area of the region below the curve y = 1/(10 - 3x) from x = 1 to x = 2.

110          Find the area of the region under one arch of the curve y = sin x cos x.

111          Find the area of the region under one arch of the curve y = cos (3x).

112          Find the area of the region below the curve 04_integration-391.gif between x = 0 and x = 2.

113          Find the area below the curve y = (1 + 7x)2/3 between x = 0 and x = 1.

114          Find the area below the curve y = x/(x2 + 1)2 between x = 0 and x = 3.

04_integration-392.gif

04_integration-393.gif

117          Let f and g have continuous derivatives and evaluate f'(g(x))g'(x) dx.

118          A real function f is said to be even if f (x) = f (- x) for all x. Show that if f is a continuous even function, then 04_integration-394.gif

119          An odd function is a real function g such that g(-x) = -g(x) for all x. Prove that for a continuous odd function g, 04_integration-395.gif


Last Update: 2006-11-25