| The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages. |
|

Home Real and Hyperreal Numbers Slope and Velocity; the Hyperreal Line Average Slope |
|
|
|
Average Slope
If (x0, y0) and (x0 + Δx, y0 + Δy) are two points on the curve, then the "average slope" of the curve between these two points is defined as the ratio of the change in y to the change in x,
This is exactly the same as the slope of the straight line through the points (x0, y0) and (x0 + Δx, y0 + Δy), as shown in Figure 1.4.1.
Figure 1.4.1 Let us compute the average slope. The two points (x0, y0) and (x0 + Δx, y0 + Δy) are on the curve, so y0 = x02 y0 + Δy = (x0 + Δx)2. Subtracting, Δy = (x0 + Δx)2 - x02. Dividing by Δx, This can be simplified,
Thus the average slope is
Notice that this computation can only be carried out when Δx ≠ 0, because at Δx = 0 the quotient Δy/Δx is undefined.
|
|
Home Real and Hyperreal Numbers Slope and Velocity; the Hyperreal Line Average Slope |
|